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Introduction 
In a critique of conventional physics education, Tony Rothman [1] concludes that despite the impressive 
contributions of physics in the modern world, physics fundamentals are often presented in a jury-rigged 
and intellectually dishonest fashion so that the entire enterprise now resembles Bruegel’s Tower of Babel. 
Part of the problem is the perceived need to produce simple instructional results, but these tend to be 
obtained at the expense of basic understanding of the underlying physics.  

Our analysis of the gauge concept in classical electromagnetism suggests that groupthink is another factor 
in the general problem described by Rothman.  The orthodoxy relating to the vector potential, A , has 
been repeated almost verbatim from one electromagnetism textbook to another.  An example of the 
uncritical acceptance of the current gauge formulation is that the Lorenz gauge has been attributed to H.A. 
Lorentz for generations.  It is only recently that the author of the concept is recognized as L. Lorenz [2].  
This correction is made in the latest edition of Jackson’s textbook [3].  

At present, the gauge concept is the centerpiece of electromagnetism.  Electromagnetism is considered a 
paradigm for gauge theories with the freedom to choose arbitrary functions for a gauge represented as a 
convenience in problem solution.  We show that, on the contrary, the electromagnetic gauge concept is a 
source of fallacies and confusion that mask fundamental physics principles and phenomena.  The gauge 
approach has evolved into a number of ad-hoc rules that give the right answer: certain types of problem 
require certain “convenient” gauge choices.   A reflection of the overall confusion is the extraordinary 
number of papers pertaining to this topic. 

The conventional view is that only the curl of the vector potential has meaning through its connection to 
the magnetic field, so the vector potential itself has little physical significance.  Konopinski [4] 
challenged that view.  He demonstrates that the vector potential always had physical meaning as the field 
momentum.  His definition is analogous to the definition of the electric field in terms of the force on a test 

charge q:  the field momentum is given by momentum, /qA c , imparted to a test charge, q, as the source 

current is applied.  This gives A  measurability, at least in principle.  Konopinski’s demonstration of the 
physical reality of the vector potential is important for two reasons.  First, it satisfies the normal 
requirement that physics deals with quantities and relationships that have physical meaning and are 
testable.  The other reason is that once the physical reality of the vector potential is recognized, the notion 
that one can always add any arbitrary scalar component is no longer tenable because there are restrictions 
relating to the fact that the source of this component must now be physical in origin. 

Another misconception is that only the vector potential is undefined. Actually, in the current formulation, 
in the presence of dynamic Coulomb fields, none of the fields is completely defined if the vector potential 
is left undefined.  These issues are resolved in the following by recognizing that the vector potential is 
determined by both the magnetic field and the induced electric field.  
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Demonstration of gauge fallacies 
A contributing factor to the gauge-related fallacies is the failure to distinguish among variables. In the 
standard formalism, the labels E , A , and   are each commonly used to represent a variety of different 

variables.  We use subscripts throughout the following as an aid to clearly preserving the meaning of a 
given variable.   

We begin with some elementary notes.  According to the Helmholtz theorem, any physically meaningful 
vector can be written as a sum of a gradient of a scalar and a curl of a vector.  A gauge choice is required 
if one needs to obtain quantitative expressions for variables that are described only by a curl equation.  
One generally chooses a gauge that produces the simplest, least cumbersome form for relationships 
among variables, in analogy with the choice of zero for the Coulomb potential. The choice of zero for the 
gauge usually serves this purpose.  Alternative choices of gauge cannot affect the fundamental physics. 

Hidden gauge 
The magnetic field ܤ  is given by, 

 B A  . (1)  

According to the Helmholtz theorem, the general expression for the vector potential, A , is given by 

 A AA F   , (2) 

so Eq. (1) defines A  to within an arbitrary function, A , which means that a gauge choice is required if 

no other information is available.  A non-zero divergence of a vector implies the existence of a scalar 
field associated with that vector.  The following summarizes the usual development of the gauge based 
approach and illustrates how it is a source of confusion.   

Faraday’s law is originally expressed as a line integral of the induced field, ܧூ , around a closed path, 

which leads to the relationship, /IE B t    . Since the Coulomb field is always derivable from a 

scalar potential, C CE   . (In the general case, C  is a retarded potential, as discussed in section D.)  

When these two electric fields are present together, the total field is I CE E E  , giving  

/E B t    . Applying Eq.(1) gives ( / ) 0E A t     .  Thus, /E A t      , with   

representing the gradient of a scalar potential so that E is given by,  

 /E A t    . (3) 

This approach presents two problems. First it artificially couples the two basic electric fields as if the 
principle of superposition no longer applies.  Second, it leaves the impression that A  is the only variable 
requiring a gauge choice.  Regarding the first item, this artificial coupling of the two very different 
electric fields is used later as justification for introducing the Lorenz condition to effect a decoupling 
[3,5,6].  Decoupling is needed to address a wide variety of problems. Regarding the second item, if one 
preserves the distinction among variables, it is seen that there are actually two gauges to consider.  A 
clearer development of the basic equations is offered next. 
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Adhering to the original form of the Faraday law, which relates only to the induced field, IE , one obtains 

 I / /E B t A t       , (4) 

by applying Eq.(1).  As with Eqs. (1) and (2),  the curl provides an incomplete definition of  ܧூ since  

 I ( )I IE E    . (5) 

So, the general expression for  ܧூ is,  

                         
/I IE A t     . (6) 

 Therefore, the general expression for total electric field is,  

( ) /C I C IE E E A t        ,                    (7) 

with A  given in general form by Eq.(2).  Comparing Eqs.(3) and (7) shows that, in general,   is not the 

Coulomb potential as conventionally assumed, but is the sum of two scalar fields, C I    .  So the 

common textbook assumption that   is just the Coulomb potential represents the adoption of a hidden 

gauge choice, 0I  .  Similarly, Eq.(6) shows that the standard practice of employing 

 /I SE A t    (8) 

implies the same hidden gauge choice.   The subscript on SA is used to denote the adoption of the 

standard gauge. Each gauge choice results in a different, but physically meaningful, vector potential, as 

we shall see.  Note that I =0 does not necessarily mean 0IE   because the vector potential is still 

described by Eq.(2).  This hidden gauge choice is always made in electromagnetism in either of the two 

ways given above, so I =0 is always the implicit “standard gauge” in electromagnetism.   

Hidden gauge and Gauss’ law 
Gauss’ law for the basic dynamic CE and IE fields is given by 

 ( ) /C IE E E      .  (9) 

Inserting Eq.(7) into Eq.(9) gives the general expression for Gauss’ law, 

 2 ( ) ( ) / /C IE A t            , (10) 

where A  is given by Eq.(2).  Applying the hidden gauge, I =0, gives   

 2 ( ) / /C SA t        . (11) 
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Since 2
S AA    , Eq.(11) can be rewritten as 

 2 2( / ) /C A t            . (12) 

We now consider the corresponding Coulomb gauge ( 0CA  , 0A  ) expression to complete the 

results for the two simplest gauge choices ( 0, 0I A   ).  From Eq.(10),  

 2 2( ) /C I          .  (13) 

Note the similarity of Gauss’ law in the two gauges, Eqs.(12) and  (13). Both express the same physics 
contained in the hidden law, but in different forms.  Both say that the sum of  two dynamic scalar fields 
obeys Gauss’ law.  Consequently, the same electrostatic Laplacian expression applies to sum of the 
dynamic potentials in both gauges.  As we will show, this result is actually a basic feature of retarded 
fields.  

There is a simple relationship between these two gauge scalar potentials which is obtained by equating the 

Gauss’ law expression in the two respective gauges, the standard gauge, 0I  and the Coulomb gauge, 

0A  . The result is, 

 /I A t    . (14) 

We will revisit Eq. (14) to show it is an identity, rather than an equality, because both terms represent the 
same induced scalar potential. 

Hidden gauge and the peculiarity of the Coulomb gauge for dynamic fields 
Jackson’s textbook [3] offers a demonstration that the standard treatment of the gauge concept leads to the 
requirement that dynamic Coulomb fields propagate instantaneously.  He describes this as a peculiarity.  

We reproduce Jackson’s demonstration here.  First, ignore the distinction between CA and SA . Next, 

apply /IE A t   .   Finally, invoke the Coulomb gauge, 0A  , in the dynamic form of Gauss’ law, 

Eq.(9). This gives, 

 2 /C     . (15) 

Since C is a basic field, and cannot be considered a sum of more fundamental fields in the manner 

described in section B, Eq.(15)  indeed requires that dynamic Coulomb fields propagate instantaneously, 
which is an absurdity.  The resolution of this issue is addressed next.  

Overlooked law of physics 
In the usual derivation of the dynamic form of Gauss’ law, Eq.(9), involves nothing more than inserting 
the sum of the dynamic fields to the static expression for the divergence of the Coulomb field. That is not 
a legitimate procedure.  Closer examination of Eq. (9) reveals an overlooked physical law.  Under 
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dynamic conditions  the Coulomb field can no longer treated as propagating instantaneously, so it no 
longer obeys Gauss’ law.  The overlooked law can be expressed as: A dynamic Coulomb field induces a 
self-correcting scalar component for the induced field so that the total electric field obeys Gauss’ law.  
Consequently, E , which is the now sum of retarded Coulomb and induced fields, appears to propagate 
instantaneously from a central source or a distribution of central sources, as required by Eq.(9).  In other 
words, E  must behave as if it were propagating as a quasi-static field with all field lines originating and 
terminating on the instantaneous position of the moving charges.   

The basic example of this phenomenon is the pair of Lienard-Weichert retarded potentials for a moving 
point charge.  For a moving charge, neither		ܧ஼   nor		ܧூ at a distant point in space can originate from the 
present location of the moving charge because of the finite speed of light. The total E  field, although no 
longer spherically symmetric, is nevertheless radial and tracks the instantaneous position of the charge, so 
E  obeys Gauss’ law.  Thus, despite the fact that both fields propagate at the speed of light, the sum, E , 
at a distant point is directed as if it were an  instantaneously propagating field.  This effect is arguably the 
most fascinating phenomenon in electromagnetism.  The principal reason that its central role in the basic 
phenomena has been ignored to date is that the present gauge approach masks its presence. 

As for the dynamic form of Gauss’ law, the need for Eq. (9) and the overlooked law rests on charge 
conservation. This can be seen by taking the time derivative of Gauss’ law, Eq.(9), which gives, 

 / 0TJ t    . (16) 

where TJ is the true current and the solenoidal total current, /TOT TJ J E t    .  So the real basis for 

the dynamic form of Gauss’ law is the requirement of charge conservation.   

The overlooked law also provides the mechanism that explains the remarkable fact that all source currents 
in electromagnetism propagate instantaneously, no matter how rapidly these currents may vary.   How 
does nature accomplish this without violating relativity?  The explanation is that the displacement current 
fields and the fields that drive the charges in a conductor are always a sum of basic retarded 		ܧ஼   and 		ܧூ  
fields, and this sum appears to propagate instantaneously, as described above ( if one ignores field 
distortions).   

Returning to the overlooked law, the situation for 		ܧூ is similar to that of the vector potential. Faraday’s 
law offers an incomplete description of the induced field because it only defines 		ܧூ  via a closed line 
integral.  Consequently, any scalar component is left undefined.  A complete definition of  		ܧூ  is 
available using a precise mathematical expression of the overlooked law that is, in effect, lying in plain 
sight:  recognizing the scalar wave equation for the Coulomb field as a fundamental requirement of 
Coulomb fields (which we will return to later), 

 2 2 2 2( / ) / /C C t c         , (17) 

and comparing this with the general expression for Gauss’ law, Eq.(9) shows  

 2 2 2( / ) /I CE t c    . (18) 



 
Approved for public release; distribution is unlimited 

6 
 

With Eq.(18) accepted as a fundamental equation, one now has a complete characterization of IE  as well 

as CE (via Eq.(9)).  The crucial example is the one given above, since Eq.(18) is required by the wave 

equation for C . The basic physics equations must require that Coulomb fields propagate at the speed of 

light, regardless of any gauge choice.  By contrast, as shown in section C, the present textbook formalism 
leads to the conclusion that Coulomb fields propagate instantaneously in the Coulomb gauge.   

Combining Eq.(18) with the standard gauge expression, /I SE A t   , gives 

 2 2( / ) /A S CA t c        .  (19) 

Equation (19) appears identical to the familiar Lorenz condition, but now it is required by a law of 
physics and is not just a convenience that provides the right answer.  In physics, as in medicine, a 
condition is something to be avoided, so we will refer to Eq.(19) as the Lorenz equation since it is now a 
valid equation and not an arbitrary function.  Equation (19) is actually the field momentum expression of 
the overlooked law, Eq.(18);  both Eqs.(18) and (19) have the dynamic Coulomb field as the physically 
meaningful common source. (It might be argued that the addition of a static scalar potential to Eq.(19) 
will also satisfy Eq.(18).  This possibility is dismissed as physically meaningless, however.  Also, 
according to Konopinski’s definition of A, such static sources are irrelevant.)   

The conclusion regarding the role of retarded fields and current continuity in establishing the physical 
necessity of Eqs.(17), (18), and (19) was developed using the argument that the basic Coulomb fields 
must propagate at the speed of light.  We can arrive at the same conclusion more directly using the pair of 
general retarded field equations [3,5,6] for the vector and Coulomb potentials. 

First, we provide a new perspective on these equations.  Equations (20) and (21) are presented in one 
textbook after another as solutions to the wave equations that are derived from Maxwell’s equations with 
the incorporation of the Lorenz condition, which, as we have discussed, is only valid in the standard 
gauge.  So, in order to show that Coulomb fields, for example, propagate at the speed of light, one needs 
to invoke an arbitrary function, the Lorenz condition, which is another absurdity.  Moreover, this 
approach is misleading because these equations apply more generally and are not restricted to the 
standard gauge, as we will demonstrate in Section F.  It can be seen by inspection that they are 
straightforward modifications of the corresponding static expressions using only the requirement that 
fields must propagate at the finite speed of light.  They are therefore first principles results that enable us 
to avoid the arbitrary Lorenz condition:   

 2
12

(2, )
(1, )

4
rj t

A t dV
r




  , (20) 

and, 

 2
12

(2, )
(1, )

4
r

C

t
t dV

r




  , (21) 
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where the fields are evaluated at position 1 and present time t, from sources located at position 2 and 

retarded time 12 /rt t r c  .  

Using Eqs.(20) and (21) as the starting point, one can now directly obtain the wave equation for  (1, )C t
and the Lorenz equation from first principles by differentiation.  This involves using the chain rule and

2
1 12 12(1 / ) 4 ( )r r   for the scalar wave equation, and the chain rule, 1 12 2 12( ) ( )f r f r   , and 

integration by parts, where surface integrals of physically real variables vanish at large distances, for the 
Lorenz equation.   Equation (21) and, thus, the wave equation, are independent of gauge choice because 
Eq.(21)  is independent of the vector potential.   It follows that Eq.(18) must apply because of Gauss’ law.  

We now have that the vector potential, SA  , is completely defined in the standard gauge by Eqs.(2) and 

(19). Equation (19) also illustrates the point that physics dictates the choice of the second gauge, A , once 

the first gauge choice is exercised ( 0I  ).  This clash of gauge choices is the main flaw in Jackson’s 

demonstration in section C.  The above completely undermine the whole premise of the gauge approach 
which holds that one is always free to make arbitrary gauge choices, and it provide a physical explanation 
for the apparent central role played by the Lorenz equation.  We note that the existence of a connection 
between the Lorenz equation and the continuity condition has already been stated in textbooks (e.g., 
Feynman[5] , Panofsky and Phillips[ 6]).    

 In summary, by explicitly adopting the previously unrecognized standard gauge, 0I   (via Eq.(8)) and 

adding Eq.(18) to complete the list of Maxwell’s equations, we now have a complete set of fundamental 
equations. All variables have physical meaning and measurability and are completely defined. The focus 
on the electromagnetic gauge concept and the Lorenz condition has been replaced by a simpler and 
physically more meaningful formulation centered on recognition of the fundamental role of retardation 
effects.   

As for the gauge concept, one can initially fix the induced field gauge ( I =0) in a footnote, and forget it.  

(Something resembling this is done in practice, as reflected in the frequent use of the Lorenz condition, 
but it is framed in an invalid gauge context.)  As will be made evident, once the standard gauge is 
adopted, the alternative Coulomb gauge approach is primarily useful as an instructional device.  We 
continue illustrating the implications of these results, in the following sections.   

In the absence of dynamic Coulomb fields 
Consider cases where dynamic Coulomb fields are absent, so that there are no retarded Coulomb fields.  

The textbook treatments of these cases generally invoke 0CA   ( 0A  ) as the convenient gauge, 

with labels such as Coulomb gauge or radiation gauge.     

As discussed earlier, a dynamic Coulomb field is the only possible, physically meaningful source of a 
scalar component for induced fields or for field momentum. (i.e., Eqs.(18) and (19)).  In the absence of 
any dynamic Coulomb field, induced scalar fields have no meaning, so physics requires



 
Approved for public release; distribution is unlimited 

8 
 

0C SA A A    .   Consequently, in the absence of dynamic fields, the gauge concept itself is 

meaningless.   

Note that even without our introduction of the overlooked law, or Konopinski’s definition of the vector 
potential, the gauge approach cannot apply in this case.  Absent Coulomb fields, Gauss’ law always 

requires that the induced field be solenoidal.  In view of Eq. (8), there never was a free choice for A . 

As an elementary example, consider a circular metal ring in a uniform, time varying magnetic field         
(Fig. 1a). This is similar to the betatron configuration.  Recall that potential differences are given by a line 
integral of 		ܧ஼	,	while emf’s are given by a line integral of 		ܧூ (which also illustrates the point we made 
earlier regarding the need to maintain the distinction among fields for even the most elementary 
problems).  Given the ring symmetry and field uniformity, there can be no potential differences, so the 
apparent instantaneously transmitted current changes are actually generated by the uniform distribution of 
an emf along the ring.  Thus, there is no violation of relativity, no induced scalar potentials, and, thus, no 

free choice for A .  The vector potential A  must be solenoidal in this case. 

The same holds for electromagnetic radiation in free space, remote from any sources.  So there are no 
Coulomb fields, and, again, only solenoidal fields exist.  In classical electromagnetism, the radiation 
fields and their sources propagate through space together at the speed of light by means of successive 
generations of time varying closed loops of magnetic fields which induce closed loops of displacement 
currents, which, in turn, induce new magnetic field loops, continuing ad infinitum.  Despite this, 
electromagnetic radiation is always addressed in terms of the convenient choice of the radiation gauge,

0A  , as if there were a choice.   

 

Wave equations in the two gauge choices 
We now consider the wave equations in the two simplest gauge formulations ( 0I  , 0A  ).  The 

general expression for wave equation for the vector potential in terms of the two arbitrary gauge choices 
is obtained using Ampere’s law, 

 ( / )TOT TB A J J E t         , (22) 

where TJ  is the true current,  and /E t    is the sum of the two displacement currents.  Applying 

Eq.(7) to Eq.(22) gives the general wave equation (prior to any gauge selection): 

 2 2 2( ) ( ) ( ) / /T C IA A J t A t               .  (23) 

The vector potential wave equation in the standard gauge, 0I  , is obtained directly from Eq.(23), 

giving the familiar standard form for the wave equation for the vector potential, SA , 

 2 2 2 2/ ( ( / ) / )S S T S CA A t J A t c             . (24) 
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Thus, whenever these familiar expressions are employed, one must recognize the implicit assumption of 
the standard gauge choice. 

Applying the Lorenz equation, Eq.(19), gives the familiar wave equation for the non-solenoidal SA , 

 2 2 2/S S TA A t J       . (25) 

A key point is that the general solution to Eq.(25) is given by the retarded field integral in Eq.(20) over 

the source current, which, in the present case,  is the true current , TJ  . Typically, true currents refer to 

moving charges in conductors.  In a circuit that contains a Coulomb field, e.g., Fig. 1b, the portion of the 

circuit represented by TJ  is incomplete, and therefore non- solenoidal.  The vector potential, SA , 

generated by that source is obtained by the integral over TJ  using the general solution for SA  in Eq.(20).  

As indicated in our earlier discussion, if one calculates the divergence of A in Eq.(20),  one finds that 

solenoidal sources ( 0j  ) produce solenoidal fields and non-solenoidal sources ( 0j  ) produce 

non-solenoidal fields.  So the physical meaning of the vector potential obtained in the standard gauge is 

that SA  is a component of the total vector potential that would be obtained from the entire solenoidal 

current loop.  Hence, it cannot be solenoidal. 

We now discuss the corresponding wave equations in the Coulomb gauge formulation.   Eq.(8) no longer 

applies for IE .  Returning to the general expression for IE , Eq.(6), with  0A   gives,  

 /I C IE A t     . (26) 

In the Coulomb gauge formulation, the corresponding wave equation from Eq.(23) is  

 2 2 2/ ( ) /C C T C IA A t J t              .       (27) 

The scalar wave equation for C obtained from Eq.(21) applies here because is independent of gauge 

choice. It now requires, 

 2 2 2 2/ /I I CE t c       . (28) 

Thus, the overlooked, fundamental law of induction, Eq.(18),  is obtained in both formulations which 
satisfies the criterion of gauge invariance for fundamental equations. 

Returning to Eq. (26), it describes how the dynamic Coulomb field now induces the scalar I directly in 

the expression for IE  in the Coulomb gauge formulation, rather than indirectly via the vector potential, as 

in the standard gauge.  And it explains more clearly why Eq.(14) is actually an identity.    

As for the physical meaning of the vector potential in the Coulomb gauge, note that the displacement 

current that completes the current loop with TJ  arises from the time derivative of   in Eq.(27) , which 
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obeys Gauss’ law at all times. Thus, it behaves as if it were an instantaneously propagating longitudinal 
field, producing an instantaneously propagating displacement current.  The complete current loop serves 

as the solenoidal current source for the solenoidal vector potential, CA .  In this case, the solution for CA is 

obtained from Eq.(20) using /TJ t    as the source current. 

The wave equations in the two gauge contexts, Eqs. (25) and (27), express the same physics despite the 
fact that the Lorenz equation does not apply in the Coulomb gauge.  The divergence of both returns the 
continuity equation, and the curl of both returns the wave equation for the magnetic field, B . (The reason 

that the two different vector potentials SA and CA  give the same B is that there is no net contribution from 

the scalar component.)  Both vector potential wave equations give the wave equation for the induced 

field, IE .  And, one can complete the set of basic equations with the gradient of Eq. (17), which gives the 

wave equation for CE , which is valid for both gauges. 

Finally, it should be noted that the freedom to assign the induced scalar field between A and I is 

directly related to the Lorenz transformation where one is free to add a gradient of a scalar to the vector 
potential as long as one subtracts a compensating term from the scalar potential.   Thus the Lorenz 
transformation is more than a mathematical trick as usually portrayed, it has physical significance.  
Furthermore, as illustrated by the two simplest gauge choices above, the physical meaning of the 
variables is maintained with this transformation if one preserves the identity of the variables. 

Four- vector formulation 
The ability to express the basic equations in four-vector form is conventionally used to justify the 
otherwise arbitrary application of the Lorenz condition.  In the following, we modify the standard four-
vector notation to more precisely reflect gauge choice, and also show that the Lorenz equation and the 
standard gauge are not unique in providing a four-vector formulation.  (The requirement for the four-
vector formulation follows from the fact that Maxwell’s equations are invariant to a Lorentz 
transformation.)   

Following the 1c   notation in Feynman et al [5], the four- vector has the form, 

 ( , , , )t x y za a a a a  . (29) 

The four-vector divergence is given by 

 /ta a t a      , (30) 

and, the four-vector Laplacian is given by 

 2 2 2 2/ t    . (31) 

Preserving the distinction among vector potentials, the standard gauge potential is given by, 
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 ( ) ( , )S C SA A  . (32) 

Using the current vector, 

 ( , ( ) , ( ) , ( ) )T x T y T zj J J J  , (33) 

gives, 

 2 ( ) /SA j   , (34) 

and, 

 0j   . (35) 

Equation(19), the Lorenz equation, is given by,  

 ( ) 0SA   . (36) 

To illustrate that the Coulomb gauge results can also be expressed in four-vector form, the Coulomb 
gauge formulation developed earlier gives: 

 2 ( ) /CA j   , (37) 

where, 

 ( ) ( , )C C CA A  , (38) 

and, 

 ( , ( / ) , ( / ) , ( / ) )T x T y T zj J t J t J t                 , (39) 

where is the sum of scalar potentials. In this case, 

 /j t      . (40) 

Thus, we have shown that the Coulomb gauge formulation produces all the basic equations of 
electromagnetism, complete with their four-vector expressions, where the Lorenz equation does not 
apply.  So the idea that the Lorenz condition, (i.e., the standard gauge) is essential to electromagnetism 
can be included on the list of fallacies. The one factor that is fundamental in both the standard and the 
Coulomb gauge formulations is the previously overlooked law of induction, Eq. (18). 

Picture of reality 
Many of the points made in Part II are summarized in schematic form in Figure 1. It compares the two 
general categories of problems encountered in electromagnetism.  Figure 1a represents cases where 
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external dynamic Coulomb fields are absent and Figure 1b represents cases where dynamic Coulomb 

fields are present.  In Figure 1a, either the true current, TJ , or the displacement current /DJ E t    

forms a closed loop so that the resulting vector potential field ( or field momentum) is solenoidal and the 

gauge concept does not apply ( S CA A A  ).  In the case of a current induced in a metal ring by a 

uniform magnetic field, the emf is uniformly distributed along the ring and the fact that current changes 
occur simultaneously at all points along the ring does not violate relativity.   

A related point is that the symmetry of the ring in a changing magnetic field does not suspend Ohm’s law, 
so that internal potential differences are, in fact, present in any given ring segment from that effect.  These 

potential differences are exactly cancelled by the charge distribution generated by IE so that no net 

charges exist anywhere along the ring.  

Consider the case where a steady state AC current is generated by a localized emf  in the ring.  Now the 
instantaneously transmitted current changes provide an illusion of violating relativity.   In this case, 
however, a uniformly induced emf arises from the self generated magnetic field, so the net emf acts in the 

same way as in the previous example to preserve charge continuity. Again the IE  fields play an essential 

role. 

Figure 1b corresponds to more typical circuits where both types of current, TJ and an external DJ  exist 

together to form a closed loop ( C SA A ).   The overall circuit geometry is similar, as shown in the two 

figures, so the fields are similar in both.  It should be clear from this diagram that the Coulomb gauge 

vector potential CA is unique, solenoidal, and thus completely defined in both figures.  As discussed, the 

SA  field is a non-solenoidal component of CA  . (A prime is added to the field terms to reflect the 

expected differences in actual current configurations between the circuits in Figures 1a and 1b.) 

An important difference between Figures 1a and 1b is that the CE  field around the capacitor in Figure 1b 

can extend throughout space.  This is actually a complicated retarded field generated by the moving 
charges on the capacitor plates. To understand even these most elementary problems, one needs at least an 
awareness that retardation effects are at the heart of electromagnetism.  The basic feature of retarded 

fields is that their sums, C IE E E  , are always similar to quasi-static fields.  These E fields originate 

and terminate at the instantaneous position of the charges on the capacitor plates, so that the continuity 
condition applies at all times.   

Summary and Conclusions 
The present analysis provides the simple modifications needed to remove the gauge fallacies and reveal 
the basic role of retardation effects.  It also shows that the present imprisonment of electromagnetism in 
Bruegel’s tower need not be a life sentence.  The major conclusions regarding the gauge fallacies in 
electromagnetism are listed in the following: 
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a. The relationship, 2 2 2( / ) /I CE t c    is a previously unrecognized fundamental law of induction 

in electromagnetism.  It is a tacit recognition of the central role of retardation effects and supplements 

Faraday’s law of induction, to permit a full definition of IE , as well as CE .  It completes the set of 

Maxwell’s equations and can properly be termed a missing Maxwell equation. Furthermore, the Lorenz 
equation is more than a mere convenience.  It is an alternative statement of the previously missing law of 

induction in the gauge, 0I  , which provides physically meaningful characterization of the field 

momentum in that gauge; on the other hand, it only meaningful in that gauge. 

b. Generally, two gauge choices are required rather than one.  The previously hidden choice, 0I  must 

be recognized. Absurdities occur when conflicting gauge choices are adopted.   

c. As shown by Konopinski, the vector potential has both physical meaning and measurability as a field 
momentum.   

d. In the absence of dynamic Coulomb fields, the gauge concept is invalid; A is always uniquely defined 

because 0A  is a physical requirement resulting from the absence of scalar field sources.  

e. The Coulomb gauge does not require that dynamic Coulomb fields propagate instantaneously.  That 
“peculiar” conclusion originates from the erroneous, simultaneous adoption of conflicting gauge choices. 

f. The gauge concept only applies in the special case where dynamic		ܧ஼  fields exist, and, in that case, it 
only applies under the restrictions of physical laws.  Thus, it is inappropriate to characterize 
electromagnetism as a gauge theory paradigm. 
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APPENDIX A 

 

 

Figure 1.  Schematic of two general classes of problems.   

Figure 1a  corresponds to closed current loops comprised of either true currents or displacement currents. 
Induced scalar fields do not exist so the gauge concept cannot apply.  

Figure 1b corresponds to the case where induced scalar fields exist and gauge choices are required.  The 

two gauge choices give SA  and CA  , as illustrated.  

( / )T IJ or E t  

A

TJ

CA 

2( / ) /t c  

C S AA A A F   

/ /I C SE A t A t     

AB F 

C AA F   

S A AA F    

/ /I C I SE A t A t        

AB F   

Figure 1a Figure 1b


